The world of migraine treatment is awash in pills, but this doesn’t always take the gut-brain connection into account. Because the upper nasal space has good permeability and is highly vascular, it may provide rapid drug absorption into the system and consistent and predictable drug delivery. It avoids absorption of medications through the gut, which can often be inconsistent and slow due to factors such as gastroparesis associated with migraine.

In a recent survey of nearly 4,000 migraine patients, 48% who take an oral medication report still having pain two hours after taking the medication. Even when medication initially seemed to help, 38% report their headache returning within 24 hours.

GI symptoms outside of migraine—like nausea, vomiting, constipation, diarrhea, acid reflux, abdominal pain, bloating, weight loss, or feeling full long after meals—could be related to one of the disorders of gut-brain interaction that can be associated with migraine. These include functional dyspepsia, cyclic vomiting syndrome, gastroparesis, and irritable bowel syndrome.

Some 80% of people with migraine may also have gastroparesis, or delayed emptying of the stomach.

Gastroparesis and other GI conditions can contribute to inconsistencies in the efficacy of oral medications. Also, these medications might be vomited before being fully absorbed.

The upper nasal space is an underutilized route for migraine treatment, but may be an optimal route for delivery of medications.

Consider talking to your doctor about a non-oral option for medication if you experience nausea or vomiting during your migraine attacks, or if you think you may have one of the disorders of gut-brain interaction associated with migraine.

It's important to keep in mind that if oral acute medications are not bringing you adequate relief, you should consider a different route of administration, such as intranasal.

Consider that many of the current nasal-delivery technologies (sprays, droppers, and pumps) deliver less than 5% of the active drug to the nasal space. New technology is currently being explored to deliver medicine more efficiently to the upper nasal space.